
J Glob Optim (2010) 46:1–23
DOI 10.1007/s10898-009-9405-3

Solving polynomial least squares problems
via semidefinite programming relaxations

Sunyoung Kim · Masakazu Kojima

Received: 26 August 2007 / Accepted: 23 January 2009 / Published online: 11 February 2009
© Springer Science+Business Media, LLC. 2009

Abstract A polynomial optimization problem whose objective function is represented as a
sum of positive and even powers of polynomials, called a polynomial least squares problem, is
considered. Methods to transform a polynomial least square problem to polynomial semidef-
inite programs to reduce degrees of the polynomials are discussed. Computational efficiency
of solving the original polynomial least squares problem and the transformed polynomial
semidefinite programs is compared. Numerical results on selected polynomial least square
problems show better computational performance of a transformed polynomial semidefinite
program, especially when degrees of the polynomials are larger.

Keywords Nonconvex optimization problems · Polynomial least squares problems ·
Polynomial semidefinite programs · Polynomial second-order cone programs · Sparsity

1 Introduction

We consider solving a polynomial least squares problem

minimize
∑

i∈M

fi (x)2pi , (1)

where fi (x) (i ∈ M) are polynomials in x ∈ Rn, pi ∈ {1, 2, . . . } (i ∈ M) and M =
{1, 2, . . . ,m}. The problem (1) is a polynomial optimization problem (POP) with an objec-
tive function represented as a sum of positive and even powers of polynomials. In particular,
if pi = 1 (i ∈ M), the problem (1) becomes a standard nonlinear least squares problem:

S. Kim (B)
Department of Mathematics, Ewha W. University, 11-1 Dahyun-dong,
Sudaemoon-gu, Seoul 120-750, Korea
e-mail: skim@ewha.ac.kr

M. Kojima
Department of Mathematical and Computing Sciences, Tokyo Institute of Technology,
2-12-1 Oh-Okayama, Meguro-ku, Tokyo 152-8552, Japan
e-mail: kojima@is.titech.ac.jp

123

2 J Glob Optim (2010) 46:1–23

minimize
∑

i∈M

fi (x)2. (2)

The nonlinear least squares problem (2) has been studied extensively and many methods
have been proposed. Popular approaches for nonlinear least squares problems are the Gauss-
Newton and the Levenberg-Marquardt methods, which find a local (not global in general)
minimum of (2). See, for example, [27]. As opposed to finding a local minimum of (2) in those
existing methods, we propose global approaches for a more general form (1) of polynomial
least squares problems.

The number of variables, the degree of polynomials, and the sparsity of polynomials of the
problem (1) determine its solvability as a POP. Solving the least squares problem (1) using
the semidefinite programming (SDP) relaxation proposed by Lasserre [21], which is called
the dense SDP relaxation in this paper, is so expensive that only small to some medium-
sized problems can be handled, despite the powerful convergence result in theory. A sparse
SDP relaxation for solving correlatively sparse POPs was proposed in [32] to overcome this
computational difficulty, and shown to be very effective in solving some large-scale POPs.
Unconstrained POPs with the correlative sparsity could be solved up to n = 1,000 by the
sparse SDP relaxation in [32]. The convergence result of the sparse SDP relaxation applied
to correlatively sparse POPs in [22] supports the use of the sparse SDP relaxation. We should
mention that the sparse SDP relaxation provides less accurate solutions than the dense SDP
relaxation in general. Exploiting the sparsity of polynomials is, nevertheless, essential when
solving large-scale POPs. If the sparsity is not utilized, the size and the degree of polynomial
optimization problems that can be solved is limited to small and medium-sized problems.

Most of computational challenges for solving POPs come from the fact that the size of
the resulting SDP relaxation problem is too large to handle with SDP solvers such as CSDP
[2], SDPA [6], SDPT3 [31], and SeDuMi [29]. Various techniques thus have been introduced
to increase the size of problems that can be solved. The sparsity of POPs was utilized to
reduce the size of the resulting SDP relaxation problems [19,32]. Transformation of POPs to
easy-to-handle formulations for a certain class of problems was also studied. For instance, it
is shown in [15] that second-order cone programming can be used efficiently for a class of
convex POPs.

The problem (1) can be transformed to a polynomial SDP, i.e., a problem of minimiz-
ing a polynomial objective function subject to polynomial matrix inequalities, to improve
computational efficiency. Although polynomial SDPs arise in many applications in system
and control theory, their global optimization has not been dealt with extensively. Recently,
solving polynomial SDPs with the use of SDP relaxations has been studied in [9,10,16].
The convergence of polynomial SDP relaxations for polynomial SDPs was shown in [16].
The aim of this paper is to show how (1) is transformed to various polynomial SDPs and to
compare the computational performance of solving the transformed problems with solving
the problem (1) itself. We also present an efficient polynomial SDP formulation among them.
In both the original and transformed formulations, valid polynomial matrix inequalities are
added to construct a polynomial SDP of increased size and the resulting polynomial SDP
is linearized, which is then solved by a primal-dual interior-point method. We discuss the
effects of the sparsity, the size of SDP blocks, and the size of the coefficient matrix of the
linearized SDP on the computational performance.

Solving the original problem is compared with solving a transformed polynomial SDP
numerically using SparsePOP [33]. Recent advancement in the study of POPs has accom-
panied by software packages implementing solution methods for POPs. SOStools [28],
GloptiPoly [8], and SparsePOP are developed currently. SparsePOP is a collection of matlab

123

J Glob Optim (2010) 46:1–23 3

modules utilizing the correlative sparsity structure of polynomials. The size of SDP
created by SparsePOP is thus smaller than that of GloptiPoly, which makes it possible to
solve larger-sized problems.

This paper is organized as follows: After introducing symbols and notation, we present
several ways of formulating the problem (1) as polynomial SDPs in Sect. 2. In Sect. 3, a sparse
SDP relaxation of a polynomial SDP formulation is described. Section 4 includes comparison
of various polynomial SDP formulations in terms of degrees of the polynomials, the sparsity,
the size of the resulting SDPs, and the relaxation orders used to solve the polynomial SDPs.
In Sect. 5, numerical experiments are shown. Concluding remarks are presented in Sect. 6.

2 Various formulations of the polynomial least squares problems

2.1 A sparse POP formulation

Let R
n,Z+ and Z

n+ denote the n-dimensional Euclidean space, the set of nonnegative integer
numbers and the set of n-dimensional nonnegative integer vectors, respectively. For every
α ∈ Z

n+ and every x = (x1 · x2, . . . , xn) ∈ R
n, xα denotes a monomial xα1

1 xα2
2 · · · xαn

n .
Let us denote Sr and Sr+ the space of r × r symmetric matrices and the cone of r × r
positive semidefinite symmetric matrices, respectively. We use the notation S � O to mean
S ∈ Sr+. Let N = {1, 2, . . . , n}, M = {1, 2, . . . ,m}, and Ci ⊆ N (i ∈ M). The sparsity
of polynomials in the polynomial least squares problem (1) is represented using Ci ⊆ N .
Let xCi = (x j : j ∈ Ci)(i ∈ M) the column vector variable of the elements x j , and R

Ci the
#Ci -dimensional Euclidean space of the vector variable xCi . We assume that each fi (x) is a
polynomial in variables x j (j ∈ Ci), and use the notation fi (xCi) instead of fi (x)(i ∈ M).
Then, (1) can be written as

minimize
∑

i∈M

fi (xCi)
2pi . (3)

We call (3) a sparse POP formulation of the polynomial least squares problem (1).

2.2 Polynomial SDP formulations of the polynomial least squares problem

A different approach of solving (3) is formulating the problem as a polynomial SDP whose
degree is lower than (3). For description of a polynomial SDP, let F be a nonempty finite
subset of Z

n′
+ for some n′ ≥ n, N ′ = {1, . . . , n′}, and Fα ∈ Sr (α ∈ F). A polynomial

F(yC ′) of yC ′ = (y j : j ∈ C ′), for some C ′ ⊆ N ′, with coefficients Fα ∈ Sr (α ∈ Sr) is
written as

F(yC ′) =
∑

α∈F
Fα yαC ′ . (4)

We call F(yC ′) a symmetric polynomial matrix, and F a support of F(yC ′) if F(yC ′) is
represented as (4). Note that each element Fk�(yC ′) of F(yC ′) is a real-valued polynomial
in yC ′ and that Fk�(yC ′) = F�k(yC ′)(1 ≤ k < � ≤ r). When r = 1, F(yC ′) coincides with
a real-valued polynomial in yC ′ .

Let K = {1, . . . ,m′} = Ko ∪ Kc for some m′ ∈ Z+,C ′
i ⊆ N ′(i ∈ K), and let Fi (yC ′

i
) be

a symmetric polynomial matrix with ri ×ri coefficient matrices (i ∈ Kc). Then, a polynomial
SDP can be described as

123

4 J Glob Optim (2010) 46:1–23

minimize
∑

j∈Ko

g j (yC ′
j
) subject to Fi (yC ′

i
) � O (i ∈ Kc), (5)

We may regard the sparse POP formulation (3) of the polynomial least squares problem as a
special case of (5) where we take n′ = n,m′ = m, N ′ = N , K = Ko = M,C ′

i = Ci (i ∈
K), g j (yC ′

j
) = f j (xC j)

p j (j ∈ Ko) and Kc = ∅.
To derive polynomial SDPs which are equivalent to the polynomial least squares problem

(3), we utilize a special case of the so-called Schur complement relation:

s1s2 ≥ wT w, s1 ≥ 0 and s2 ≥ 0 if and only if

(
s1 I w

wT s2

)
� O (6)

holds for every s1 ∈ R, s2 ∈ R and w ∈ R
k , where I denotes the k × k identity matrix. By

letting k = 1, s1 = 1, s2 = ti and w = fi (xCi), it follows that

ti ≥ fi (xCi)
2 if and only if

(
1 fi (xCi)

fi (xCi) ti

)
� O

holds for every i ∈ M . Using this equivalence, we can transform the polynomial least squares
problem (3) into the following equivalent polynomial SDP:

minimize
∑

j∈M

t
p j
j

subject to

(
1 fi (xC j)

fi (xC j) ti

)
� O (j ∈ M).

⎫
⎪⎪⎬

⎪⎪⎭
(7)

The problem (7) can be represented in the form of (5) if we let n′ = n + m,m′ = m, N ′ =
{1, . . . , n′}, K = Ko = Kc = M,C ′

i = Ci ∪ {n + i}(i ∈ K), g j (yC ′
j
) = y

p j
n+ j (j ∈ Ko) and

Fi (yC ′
i
) =

(
1 fi (xCi)

fi (xCi) ti

)
(i ∈ Kc).

The equivalence between (3) and the polynomial SDP (7) can be shown as Lemma 2.1.

Lemma 2.1 The POP (3) is equivalent to the polynomial SDP (7).

Proof Suppose that v = ∑
i∈M fi (xCi)

2pi . Let ti = fi (xCi)
2(i ∈ M). Then (x, t) ∈ R

n+m

is a feasible solution of the polynomial SDP (7) which attains the objective value v. Con-
versely, suppose that (x, t) ∈ R

n+m is a feasible solution of the polynomial SDP (7) with
the objective value v = ∑

i∈M t pi
i . Then, it follows from ti ≥ fi (xCi)

2(i ∈ M) that

v =
∑

i∈M

t pi
i ≥

∑

i∈M

fi (xCi)
2pi .

Therefore, we have shown the equivalence of (3) and the polynomial SDP (7). 	

123

J Glob Optim (2010) 46:1–23 5

Using the relation (6) in the same way, we obtain some other polynomial SDP
formulations:

minimize
m∑

j=1

t j

subject to

(
1 fi (xCi)

pi

fi (xCi)
pi ti

)
� O (i ∈ M),

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
(8)

minimize t

subject to

⎛

⎜⎜⎜⎜⎜⎝

1 0 · · · 0 f1(xC1)
p1

0 1 · · · 0 f1(xC2)
p2

...
...

. . .
...

...

0 0 · · · 1 fm(xCm)
pm

f1(xC1)
p1 f1(xC2)

p2 · · · fm(xCm)
pm t

⎞

⎟⎟⎟⎟⎟⎠
� O.

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(9)

As variations of (7), (8) and (9), we also obtain the polynomial SDPs:

minimize
m∑

j=1

t
2p j
j

subject to

(
ti fi (xCi)

fi (xCi) ti

)
� O, ti ≥ 0 (i ∈ M),

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
(10)

minimize
m∑

j=1

t2
j

subject to

(
ti fi (xCi)

pi

fi (xCi)
pi ti

)
� O, ti ≥ 0 (i ∈ M),

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
(11)

minimize t2

subject to

⎛

⎜⎜⎜⎜⎜⎝

t 0 · · · 0 f1(xC1)
p1

0 t · · · 0 f1(xC2)
p2

...
...

. . .
...

...

0 0 · · · t fm(xCm)
pm

f1(xC1)
p1 f1(xC2)

p2 · · · fm(xCm)
pm t

⎞

⎟⎟⎟⎟⎟⎠
� O,

t ≥ 0.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(12)

Intuitively, formulating the problem (3) as (10), (11) and (12) does not seem to have advan-
tages in comparison with (7), (8) and (9), respectively, because the degree of the objective
function is doubled and more auxiliary variables ti (i ∈ M) and t are contained in the diago-
nal of polynomial matrix inequality constraints. In Sect. 4, we show that the size of the SDP
relaxation of (10) is the same as the size of the SDP relaxation of (7), but the number of
nonzeros in the coefficient matrix is slightly larger and the accuracy attained is worse than
the one by the relaxation problem of (7) through numerical results.

123

6 J Glob Optim (2010) 46:1–23

We can rewrite the polynomial SDPs (10), (11) and (12) as the following polynomial
second order cone programs (SOCPs):

minimize
m∑

j=1

t
2p j
j subject to (ti , fi (xCi)) ∈ K2 (i ∈ M).

}
(13)

minimize
m∑

j=1

t2
j subject to (ti , fi (xCi)

pi) ∈ K2 (i ∈ M).

}
(14)

minimize t2 subject to (t, f1(xC1)
p1 , . . . , fm(xCm)

pm) ∈ K1+m . (15)

Here K2 and K1+m denote 2- and (m + 1)-dimensional SOCP cones. We may replace the
objective function t2 of the last SOCP (15) by t .

minimize t subject to (t, f1(xC1)
p1 , . . . , fm(xCm)

pm) ∈ K1+m . (16)

When all polynomials fi (xCi) (i ∈ M) are linear and pi = 1 (i ∈ M), the problem (16)
is, in fact, a linear SOCP that can be directly solved by a primal-dual interior-point method
without using any relaxation technique. In such a case, solving (16) is more efficient than
solving all the other formulations (7–15). Also for some special cases of polynomial least
squares problems with all fi (xCi) (i ∈ M) linear and each pi = 2qi for some qi = 0, 1, . . .,
they can be transformed to linear SOCPs. See [15] for more details.

In general cases where some of fi (xCi)s are nonlinear polynomials, (13), (14) and (15)
become polynomial (but not linear) SOCPs. The sparse SDP relaxation method proposed by
Kojima et al. [17,18] can be applied to such SOCPs. A basis of the Euclidean space where the
underlying second-order cone lies is chosen in their method, and different choices of basis
induce different SDP relaxation problems. When the standard Euclidean basis consisting of
the unit coordinate vectors is chosen, the SDP relaxation problems induced from the SOCPs
(13), (14) and (15) can be shown to be the same as those induced from (10), (11) and (12),
respectively, by applying the SDP relaxation method [16] described in Sect. 3. Therefore, we
will not consider the polynomial SOCP formulations (13), (14) and (15) in the subsequent
discussion, and we focus on the polynomial SDP formulations (7–12). We show in Sect. 4
that the polynomial SDP formulation (7) is more efficient than all others.

3 A sparse SDP relaxation of the polynomial SDP

We briefly describe the sparse SDP relaxation [16,32] of the sparse POP formulation (3) and
all polynomial SDP formulations (7–12) of the polynomial least squares problem (3). Con-
sider (5) to deal with them simultaneously. For example, (5) represents (3) if n′ = n,m′ = m,
N ′ = N , K = Ko = M,C ′

i = Ci (i ∈ K), g j (yC ′
j
) = f j (xC j)

p j (j ∈ Ko) and Kc = ∅,

and (7) if n′ = n + m,m′ = m, N ′ = {1, . . . , n′}, K = Ko = Kc = M,C ′
i = Ci ∪ {n + i}

(i ∈ K), g j (yC ′
j
) = y

p j
n+ j (j ∈ Ko) and

Fi (yC ′
i
) =

(
1 fi (xCi)

fi (xCi) ti

)
(i ∈ Kc).

The sparsity of polynomials in (5) is first considered with a graph G(N ′, E) representing
the sparsity structure of (5). More specifically, a graph G(N ′, E) is constructed such that
a pair {k, �} with k �= � selected from the node set N ′ is an edge or {k, �} ∈ E if and
only if k ∈ C ′

i , � ∈ C ′
i for some i ∈ K . We call the graph G(N ′, E) a correlative sparsity

123

J Glob Optim (2010) 46:1–23 7

pattern (csp) graph. Each C ′
i is a clique of G(N ′, E)(i ∈ K). The next step is to generate a

chordal extension G(N ′, E ′) of G(N ′, E). (For the definition and basic properties of chordal
graphs, we refer to [1]). For simplicity of notation, we assume that C ′

1, . . . ,C ′
m form the set of

maximal cliques of a chordal extension G(N ′, E ′) of the underlying csp graph G(N ′, E) of
the polynomial SDP (5); if this is not the case, we replace C ′

i by a maximal clique containing
C ′

i . For more details, see [32].
For every C ⊂ N ′ and ψ ∈ Z+, we define

AC
ψ =

{
α ∈ Z

n+ : α j = 0 if j �∈ C,
∑

i∈C

αi ≤ ψ

}
.

Depending on how a column vector of the monomials yα is chosen, the sparse relaxation
[32] or the dense relaxation [21] is derived. The dense relaxation is obtained using a column
vector u(y,AN ′

ψ) that contains all the possible monomials yα of degree up to ψ . Selecting a

column vector u(y,AC
ψ) of the monomials yα(α ∈ AC

ψ) where elements yα(α ∈ AC
ψ) are

arranged in lexicographically increasing order of α’s leads to the sparse SDP relaxation if
we take C ⊂ N ′ with a small cardinality or the dense SDP relaxation if we take C = N ′.
The first element of the column vector u(y,AC

ψ) is always y0 = 1 since 0 ∈ AC
ψ . The size

of u(y,AN ′
ψ) of the dense relaxation is

(
n′ + ψ

ψ

)
, and the size of u(y,AC

ψ) of the sparse

relaxation is

(
#C + ψ

ψ

)
. As a result, the size of u(y,AN ′

ψ) of the dense relaxation is always

larger than that of u(y,AC
ψ) of the sparse relaxation unless C = N ′.

Let ω0 =
⌈

deg
(∑

j∈M g j (yC ′
j
)
)/

2
⌉
, ωi =
deg(Fi (yC ′

i
))
/

2� for every i ∈ Kc, and

ωmax = max{ωi : i ∈ {0} ∪ Kc}. (17)

Then the polynomial SDP (5) is transformed into an equivalent polynomial SDP

minimize
∑

j∈Ko
g j (yC ′

j
)

subject to u(y,AC ′
i
ω−ωi

)u(y,AC ′
i
ω−ωi

)T ⊗ Fi (yC ′
i
) � O (i ∈ Kc),

u(y,AC ′
j

ω)u(y,AC ′
j

ω)
T � O (j ∈ K)

⎫
⎪⎪⎬

⎪⎪⎭
(18)

with some relaxation order ω ≥ ωmax, where ⊗ denotes the Kronecker product of the two

matrices u(y,AC ′
i
ω−ωi

)u(y,AC ′
i
ω−ωi

)T and Fi (yC ′
i
).

The matrices u(y,AC ′
i

ω−ωi
)u(y,AC ′

i
ω−ωi

)T (i ∈ Kc) and u(y,AC ′
j

ω)u(y,AC ′
j

ω)
T (j ∈ K)

are positive semidefinite symmetric matrices of rank one for any y, and the element in the
upper-left corner of the matrices is 1. The equivalence between the polynomial SDP (5) and
the polynomial SDP (18) is therefore shown.

Since the objective function of the polynomial SDP (18) is a real-valued polynomial and
the left hand side of the matrix inequality constraints of the polynomial SDP (18) are real

123

8 J Glob Optim (2010) 46:1–23

symmetric polynomial matrices, we can rewrite the polynomial SDP (18) as

minimize
∑

α∈F̃
c̃0(α) yα

subject to Li (0, ω)−
∑

α∈F̃
Li (α, ω) yα � O (i ∈ Kc),

M j (0, ω)−
∑

α∈F̃
M j (α, ω) yα � O (j ∈ K),

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

for some F̃ ⊂ Z
n+\{0}, c̃0(α) ∈ R(α ∈ F̃) and real symmetric matrices Li (α, ω), M j (α, ω)

(α ∈ F̃ ∪ {0}, i ∈ Kc, j ∈ K). Note that the size of the matrices Li (α, ω), M j (α, ω)(α ∈
F̃ ∪ {0}, i ∈ Kc, j ∈ K) and the number of monomials yα(α ∈ F̃) are determined by the
relaxation order ω. Each monomial yα is replaced by a single real variable zα , and we have
an SDP relaxation problem of the polynomial SDP (5), called a sparse SDP relaxation:

minimize
∑

α∈F̃
c̃0(α)zα

subject to Li (0, ω)−
∑

α∈F̃
Li (α, ω)zα � O (i ∈ Kc),

M j (0, ω)−
∑

α∈F̃
M j (α, ω)zα � O (j ∈ K).

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(19)

Here y0 = z0 = 1. We mention that the dense SDP relaxation is obtained if we take
C ′

i = N ′(i ∈ Kc) and C ′
j = N ′(j ∈ K) in (18).

We call each
∑

α∈F̃ Li (α, ω)zα a localizing matrix , and each
∑

α∈F̃ M j (α, ω)zα a
moment matrix in (19). If Fi (yC ′

i
) is ri × ri , then the size (= the number of rows = the

number of columns) of the localizing matrix
∑

α∈F̃ Li (α, ω)zα is
(

#C ′
i + ω − ωi

ω − ωi

)
ri

(i ∈ Kc). Similarly, the size of the moment matrix
∑

α∈F̃ M j (α, ω)zα is
(

#C ′
j + ω

ω

)

(j ∈ K). Since the sizes of the localizing and moment matrices affect very much com-
putational performance, their sizes of the various formulations in Sect. 2 are compared in
Sect. 4.

The SDP relaxation problem (19) is solved by SeDuMi in our numerical experiment whose
results are reported in Sect. 5. The problem is formulated as the dual standard form

maximize bT y subject to c − AT y � 0. (20)

Here each column index of AT (hence each row index of A) corresponds to an α ∈ F̃, y the
column vector of zα(α ∈ F̃) and b the column vector of −c̃0(α)(α ∈ F̃). Note that
the coefficient matrices L(α, ω), M(α, ω)(α ∈ F̃ ∪ {0}), which is called SDP blocks
in the numerical results in Sect. 5, are reshaped into column vectors and arranged in c and
AT . Computational performance of solving (20) with SeDuMi depends on the size of the
coefficient matrix A, the sparsity of the coefficient matrix A and the size of SDP blocks.
The most time-consuming part in primal-dual interior-point methods is solving the Schur

123

J Glob Optim (2010) 46:1–23 9

complement matrix that is constructed from A. We note that the size of the Schur
complement matrix coincides with the number of rows of A and that its sparsity is deter-
mined by the sparsity of A. For details on the relationship between the Schur complement
matrix and A, we refer to [14]. Whether formulating polynomial SDPs with a small number
of large-sized SDP constraints is a better approach than formulating polynomial SDPs with
a large number of small-sized SDP constraints should be decided based on the size of the
coefficient matrix A, the sparsity of the coefficient matrix A and the size of SDP blocks.

4 Comparison of various formulations

There exist several advantages of formulating the problems (3) as polynomial SDPs. We
compare the maximum degree of polynomials, the minimum relaxation order defined by
(17), the ability to exploit the sparsity, the size of the moment matrices, and the size of the
localizing matrices of the various formulation presented in Sect. 2.

As seen in Sect. 3, the maximum of the degree of the objective function and the degrees
of polynomial SDP constraints, determine the minimum relaxation order which is denoted
as ωmax in (17). We usually choose the value ωmax for the relaxation order ω when an SDP
relaxation problem (19) of the given polynomial SDP (or POP) (5) is constructed. The chosen
value ωmax may not be large enough to get an accurate optimal solution in some cases. If
a solution of desired accuracy is not obtained after the application of SparsePOP, then ω is
increased by 1 and solve the SDP relaxation problem with the updated relaxation order ω
again. This does not guarantee attaining an optimal solution in theory, but a solution of better
accuracy is usually obtained in practice. In view of computational efficiency, however, taking
a smaller value for the relaxation order ω works more efficiently than a large value because
the size of the SDP relaxation problem grows very rapidly as we take a increasingly large
value for the relaxation order ω. It is thus important to have a smaller minimum relaxation
order ωmax that leads to a smaller size of the starting SDP relaxation problem. In Table 1, the
maximum degree of polynomials and the minimum relaxation order for the formulations (3)
and (7–12) are summarized. The following notation is used.

δ̄ = max{pi deg(fi (xCi)) (i ∈ M)},
δ̂ = max{deg(fi (xCi)) (i ∈ M), pi (i ∈ M)}.

In Table 1, the sparse POP formulation (3) has the largest maximum degree of polynomials
among the formulations, and the sparse polynomial SDP formulations (7) and (10) have the
smallest maximum degree. In particular, the maximum degree 2δ̄ in (3) is at least twice larger
than the other formulations. Since the smallest relaxation order that can be taken is roughly
the half of the maximum degree of polynomials, we see that the minimum relaxation order
for the sparse polynomials SDP formulations (7) and (10) is the smallest. This is the main
advantage of (7) and (10) in comparison with (3).

Table 2 shows how the relaxation order ω, the degree of polynomials fi (xCi), pi (i ∈ M)
and the size of maximal cliques Ci (i ∈ M) determine the maximum size of moment matrices
and the size of localizing matrices. We use the following notation:

γmax = max{# C j (j ∈ K)},
η̂i =
deg(fi (xCi))/2� (i ∈ M),

η̄i =
pi deg(fi (xCi))/2� (i ∈ M),

η̄ =
δ̄/2� = max{η̄i (i ∈ M)}.

123

10 J Glob Optim (2010) 46:1–23

Table 1 Comparison of the
maximum degree of polynomials
and the relaxation order of the
various formulations

Formulation Max. degree The min. relaxation order
ωmax in (17)

(3) 2δ̄ ω
(3)
max = δ̄

(7) & (10) δ̂ ω
(7)
max =
δ̂/2 �

(8) & (11) δ̄ ω
(8)
max =
δ̄/2 �

(9) & (12) δ̄ ω
(9)
max =
δ̄/2 �

Table 2 Comparison of various formulations

Formulation Exploiting sparsity The max. size of
moment matrices

The size of localizing
matrices

(3) ©
(
γmax + ω(3)

ω(3)

)
N/A

(7) & (10) ©
(
γmax + 1 + ω(7)

ω(7)

) (
#Ci + 1 + ω(7) − η̂i

ω(7) − η̂i

)
× 2

(8) & (11) ©
(
γmax + 1 + ω(8)

ω(8)

) (
#Ci + 1 + ω(8) − η̄i

ω(8) − η̄i

)
× 2

(9) & (12) ×
(

n + 1 + ω(9)

ω(9)

) (
n + 1 + ω(9) − η̄

ω(9) − η̄

)
× (m + 1)

N/A, Not applicable

In addition, ω(3), ω(7), ω(8), ω(9) indicate the relaxation order used for (3), (7) & (10), (8) &
(11) and (9) & (12), respectively.

Recall that the relaxation order ω(3), ω(7), ω(8), ω(9) must satisfy

ω(k) ≥ ω(k)max (k = 3, 7, 8, 9),

and that

ω(7)max ≤ ω(8)max = ω(9)max < ω(3)max.

Hence, if we take ω(k) = ω
(k)
max (k = 3, 7, 8, 9) for the starting SDP relaxation for the formu-

lations, the largest size of moment matrices of (7) and (10) is the smallest among the largest
size of moment matrices produced from the formulations, and the largest size of moment
matrices of (3) is the largest although (3) does not involve any localizing matrices. We con-
firm again that the sparse SDP formulations (7) and (10) have an clear advantage over the
sparse POP formulation (3) and the other sparse SDP formulations (8) & (11).

Let us now compare (7) & (10) and (8) & (11) further. When pi = 1(i ∈ M), there is
no difference in these two pairs of formulations; (7) ≡ (8) and (10) ≡ (11). Suppose that
pi = 2(i ∈ M). Then, 2δ̂ = δ̄. It follows that 2ω(7)max − 1 ≤ ω

(8)
max. Consequently, the size

of the starting SDP relaxation in the sparse polynomial SDP formulations (7) and (10) is
smaller than that in the sparse polynomial SDP formulations (8) and (11).

The sparsity of polynomials in the formulations (9) and (12) can not be exploited, thus,
the maximum size of moment matrix and the size of the localizing matrices are expected to
become larger than (7), (10), (8) and (11) unless γmax = n.

The pairs of polynomial SDP formulations (7) & (10), (8) & (11), (9) & (12) are equivalent
in the maximum degree, the maximum size of moment matrices, and the size of localizing

123

J Glob Optim (2010) 46:1–23 11

Table 3 Numerical results of the Broyden tridiagonal function. x1 ≥ 0 is added

n ω sizeA #nzA sdpBl rel.err cpu

Polynomial SDP formulation(7)

100 2 4158 × 26877 46269 12(8.9) 4.6e−10 19.2

150 2 6258 × 40427 69619 12(9.0) 1.0e−10 23.3

200 2 8358 × 53977 92969 12(9.0) 2.4e−9 34.2

Polynomial SDP formulation (10)

100 2 4158 × 26877 48751 12(8.9) 1.4e−8 16.8

150 2 6258 × 40427 73351 12(9.0) 2.1e−8 23.3

200 2 8358 × 53977 97951 12(9.0) 2.0e−8 31.8

Table 4 Notation

n The number of variables

sizeA The size of the coefficient matrix A of the SDP relaxation problem in the
SeDuMi input format (20)

ω The relaxation order

#nz The number of nonzeros in the coefficient matrix A

sdpBl The maximum size (average size) of SDP blocks in the coefficient matrix A

rel.err The relative error of SDP and POP/PSDP objective values

cpu The cpu time to solve SDP by SeDuMi in seconds

matrices as indicated in Table 2. Their computational accuracy is, however, different. In fact,
(7), (8), and (9) provide higher accuracy than their counterpart. As an example, the com-
parison of numerical accuracy for the Broyden tridiagonal function between (7) and (10) is
shown in Table 3. We see that (7) results in smaller relative errors. Notice that the size of A
for (7) is equivalent to that for (10). See Table 4 for the notation used in Table 3.

As observed with the size of the moment and localizing matrices in Table 2, computa-
tional accuracy in Table 3, the relaxation order in Table 1, we use (7) to compare with (3)
numerically in Sect. 5.

5 Numerical results

We compare numerical results of the spare POP formulation (3) and the sparse polynomial
SDP formulation (7) (PSDP) of several polynomial least squares problems from [5,7,11,20,
25,26,30]. Problems for the numerical tests are randomly generated problems, the Broyden
tridiagonal function, the generalized Rosenbrock function, the chained Wood function,1 the
Broyden banded function, the Watson function, the partition problem described in [11], and
polynomial least squares problems using the cyclic-n polynomial and the economic-n poly-
nomial from [30]. All the problems were solved by Matlab codes using SparsePOP [33] and
SeDuMi [29] on the hardware Power Mac G5 of 2.5 GHz with 2GB memory. The notation
in Table 4 is used for the description of numerical experiments.

1 To represent the generalized Rosenbrock and chained Wood functions as sums of squares of polynomials
with positive degrees, the constant 1 is subtracted from the original functions.

123

12 J Glob Optim (2010) 46:1–23

A smaller value of the starting relaxation order ω = ωmax given by (17) for the sparse
PSDP formulation (7) than the sparse POP formulation (3), as shown in Sect. 4, does not
always mean better performance of (7). Also the relaxation order ω = ωmax may not be large
enough to get optimal solutions with high accuracy. In such a case, increasing the relaxation
order, which gives an impact on numerical performance, and solving the problem again is
necessary. Note that no theoretical result on the speed of the convergence is known, although
the convergence of the SDP relaxation of increasing size to the optimal value of the POP was
proved by [21].

We show the effects of the size of the coefficient matrix A of the SDP relaxation problem
in the SeDuMi input format (20) (sizeA), the number of nonzero elements of A (#nz), and
the size of SDP blocks of A (sdpBl) on numerical performance. In the numerical experiments
comparing the sparse POP formulation (3) and the sparse polynomial SDP formulation (7),
we observe that the formulation that leads to larger sizeA, #nz and sdpBl takes longer cpu
time to find an optimal solution except the generalized Rosenbrock function. Among the
three factors, sizeA and #nz affect the computational efficiency more than sdpBl as will be
seen in Table 5. It should be mentioned that the three factors may not completely determine
computational efficiency particularly when cpu time is very small, for instance, less than 5 s,
for small-sized problems. SeDuMi usually takes a fixed amount of cpu time regardless of the
size of SDP, and finding an approximate solution of lower accuracy may take shorter than
obtaining an approximate solutions of higher accuracy. This will be observed in some of
the numerical tests on the generalized Rosenbrock function and a few tests on the partition
problem using transformation.

We begin with randomly generated unconstrained POPs with artificial correlative sparsity
that show a clear advantage of the sparse PSDP formulation (7) against the sparse POP for-
mulation (3). As described in Sect. 3, the correlative sparsity affects sizeA, #nzA and sdpBl.
With a given clique size 2 ≤ c ≤ n, define cliques

Ci = { j ∈ N : i ≤ j ≤ i + c − 1} (i = 1, 2, . . . , n − c + 1),

where N = {1, 2, . . . , n}. We then generate a vector gi (i = 1, 2, . . . , n − c + 1) using
random number generator in the interval (−1, 1) for coefficients. Let

fi (x) = gT
i u(x,ACi

di
) (i = 1, . . . , n − c + 1),

where di denotes the degree of fi (x). Then, we consider

minimize
n−c+1∑

i=1

fi (xCi)
2pi +

n∑

i=1

x2
i . (21)

where
∑n

i=1 x2
i is added in order to avoid multiple number of optimal solutions.

Tables 6 and 7 show numerical results for varying n, the size c of cliques, pi and di = deg
fi (xCi)(i = 1, 2, . . . , n − c + 1). The notation “deg” denotes the degree of the polynomial
objective function of (21). For all tested cases, sizeA, #nzA, and sdpBl of the sparse PSDP
formulation (7) are smaller than those of the sparse POP formulation (3), providing optimal
solutions faster. See Table 1 for differences in ω = ωmax. In Table 7, we took di = 2 and
pi = 2(i = 1, 2, . . . , n − c + 1), so that the degree of the polynomial objective function of
(21) is 2 × 2 × 2 = 8. In (3), we need to take the relaxation order ω not less than ωmax = 4,
while we can take the starting relaxation order ωmax = 1 in (7). Actually, ω = 4 is used for
(3) while ω = 1 is used for (7). This provides big differences in sizeA, #nzA, and sdpBl. As
a result, cpu time for (7) is much smaller than that of (3).

123

J Glob Optim (2010) 46:1–23 13

Table 5 Numerical experiments with the randomly generated problem (21) of degree 4 and 6

pi di deg c n ω = ωmax sizeA #nzA sdpBl rel.err cpu

The sparse POP formulation (3)
1 2 4 3 30 2 574 × 4848 5270 10(5.9) 5.1e−9 2.4

1 2 4 3 50 2 974 × 8248 8950 10(5.9) 4.0e−9 3.1

1 2 4 3 100 2 1974 × 16748 18150 10(6.0) 9.2e−9 5.5

1 2 4 3 200 2 3974 × 33748 36550 10(6.0) 9.2e−9 8.1

1 3 6 5 50 3 6005 × 91985 103138 35(21.4) 3.2e−8 35.2

1 3 6 5 100 3 12305 × 188235 210538 35(21.5) 4.7e−9 73.7

1 3 6 5 200 3 49601 × 889858 977662 56(32.5) 9.3e−9 764.6

The sparse PSDP formulation (7)

1 2 4 3 30 1 175 × 1150 1482 4(2.5) 5.5e−9 0.4

1 2 4 3 50 1 295 × 1950 2522 4(2.5) 7.5e−9 0.7

1 2 4 3 100 1 595 × 3950 5122 4(2.5) 4.4e−5 1.5

1 2 4 3 200 1 1195 × 7950 10322 4(2.5) 2.1e−5 2.8

1 3 6 5 50 2 2011 × 13042 18395 6(4.1) 2.7e−8 5.8

1 3 6 5 100 2 4111 × 26592 37595 6(4.1) 1.2e−8 13.1

1 3 6 5 200 2 8311 × 53692 75995 6(4.1) 3.6e−8 20.6

Table 6 Numerical experiments with the randomly generated problem (21) of degree 8

pi di deg c n ω = ωmax sizeA #nzA sdpBl rel.err cpu

The sparse POP formulation (3)

2 2 8 3 30 4 3404 × 65048 76990 35(24.8) 3.3e−8 26.1

2 2 8 3 50 4 5804 × 110308 130210 35(24.9) 1.3e−7 45.7

2 2 8 3 100 4 11804 × 223458 263260 35(24.9) 1.2e−7 92.6

The sparse PSDP formulation (7)

2 2 8 3 30 1 347 × 1896 2228 5(3.0) 1.5e−8 0.6

2 2 8 3 50 1 587 × 3216 3788 5(3.0) 1.2e−8 1.2

2 2 8 3 100 1 1187 × 6516 7688 5(3.0) 1.6e−8 2.2

The Broyden tridiagonal function [25] is

f (x) = ((3 − 2x1)x1 − 2x2 + 1)2 +
n−1∑

i=2

((3 − 2xi)xi − xi−1 − 2xi+1 + 1)2

+ ((3 − 2xn)xn − xn−1 + 1)2 .

The numerical results of the Broyden tridiagonal function are shown in Table 8. The sparse
PSDP formulation (7) requires the relaxation order 2 to get accurate optimal solutions. The
sizeA, #nzA and sdpBl for the sparse PSDP formulation (7) with ω = 2 are larger than those
for the sparse POP formulation (3), taking longer to get an optimal solution. An inequality
constraint x1 ≥ 0 is added to avoid numerical difficulty arising from multiple number of
solutions.

123

14 J Glob Optim (2010) 46:1–23

Table 7 Numerical results of the Broyden tridiagonal function

n ω sizeA #nzA sdpBl rel.err cpu

The sparse POP formulation (3)

200 2 3974 × 19819 19621 10(10.0) 8.9e−8 8.4

500 2 9974 × 49819 49321 10(10.0) 1.5e−6 11.7

1000 2 19974 × 99819 98821 10(10.0) 1.5e−6 22.5

The sparse PSDP formulation (7)

200 1 997 × 4188 4984 4(3.0) 1.0e+0 0.8

500 1 2497 × 10488 12484 4(3.0) 1.0e+0 3.1

1000 1 4997 × 20988 24984 4(3.0) 1.0e+0 5.9

200 2 8358 × 53977 92969 12(9.0) 2.4e−9 34.2

500 2 20958 × 135277 233069 12(9.0) 3.7e−7 67.4

1000 2 41958 × 270777 466569 12(9.0) 2.4e−7 165.2

Table 8 Numerical results of the generalized Rosenbrock function

n ω sizeA #nzA sdpBl rel.err cpu

The sparse POP formulation (3)

200 2 1988 × 7156 6957 6(6.0) 5.1e−5 1.9

500 2 4988 × 17956 17457 6(6.0) 1.6e−4 4.1

1000 2 9988 × 35956 34957 6(6.0) 2.1e−4 8.0

The sparse PSDP formulation (7)

200 1 995 × 4570 4175 3(2.2) 5.3e−5 2.1

500 1 2495 × 11470 10475 3(2.2) 5.3e−7 4.8

1000 1 4995 × 22970 20975 3(2.2) 1.1e−6 9.9

The generalized Rosenbrock function [26] is written as

f (x) =
n∑

i=2

{
100

(
xi − x2

i−1

)2 + (1 − xi)
2
}
.

In Table 9, we notice that sizeA, #nzA, sdpBl of (7) are smaller than those of (3). Although
(7) took longer cpu time, the accuracy shown in the column of rel.err is better than (3). The
difference in cpu time, however, is small. An inequality constraint x1 ≥ 0 is added as for the
Broyden tridiagonal function.

The chained Wood function [5] is

f (x) =
∑

i∈J

(100(xi+1 − x2
i)

2 + (1 − xi)
2 + 90(xi+3 − x2

i+2)
2 + (1 − xi+2)

2

+10(xi+1 + xi+3 − 2)2 + 0.1(xi+1 − xi+3)
2),

where J = {1, 3, 5, . . . , n − 3} and n is a multiple of 4. In Table 10, the sparse PSDP for-
mulation (7) takes longer to converge, and results in less accurate solutions for the tested n’s
except n = 1,000. We notice that sizeA, #nzA, sdpBl are larger in (7) than those of (3).

123

J Glob Optim (2010) 46:1–23 15

Table 9 Numerical results of the chained Wood function

n ω sizeA #nzA sdpBl rel.err cpu

The sparse POP formulation (3)

100 2 449 × 1241 1142 4(3.5) 8.1e–6 1.3

200 2 899 × 2491 2292 4(3.5) 5.3e–6 0.8

400 2 1799 × 4991 4592 4(3.5) 1.2e–5 1.4

1000 2 4499 × 12491 11492 4(3.5) 3.4e–5 3.8

The sparse PSDP formulation (7)

100 1 248 × 2891 1470 7(5.0) 6.5e–5 0.8

200 1 498 × 5841 2970 7(5.0) 1.8e–4 1.2

400 1 998 × 11741 5970 7(5.0) 3.9e–4 2.2

1000 1 4494 × 22954 21956 7(5.0) 1.8e–6 10.2

Table 10 Numerical experiments with Broyden banded functions

k n ω sizeA #nzA sdpBl rel.err cpu

The sparse POP formulation (3)

5 7 3 1715 × 14400 14399 120(120.0) 6.0e−9 71.8

5 10 3 4091 × 57600 57596 120(120.0) 8.3e−8 351.2

5 15 3 8546 × 128025 128017 165(125.6) 2.9e−7 1158.5

The sparse PSDP formulation (7)

5 7 3 2029 × 13702 20998 45(22.7) 2.3e−9 20.6

5 10 3 4130 × 28362 42858 45(27.3) 1.1e−8 46.8

5 15 3 8158 × 58099 85034 66(31.8) 1.5e−8 174.5

The Broyden banded function [25] is written as

f (x) =
n∑

i=1

⎛

⎝xi (2 + 5x2
i)+ 1 −

∑

j∈Ji

(1 + x j)x j

⎞

⎠
2

where Ji = { j | j �= i,max(1, i − 5) ≤ j ≤ min(n, i + 1)}. Note that the number of terms

in
(

xi (2 + 5x2
i)+ 1 −∑

j∈Ji
(1 + x j)x j

)2
can be varied by changing Ji . We let

fi (x) ≡
⎛

⎝xi (2 + 5x2
i)+ 1 −

∑

j∈Ji

(1 + x j)x j

⎞

⎠
2

,

and vary the number of variables in fi (x) to investigate the performance of the sparse POP
formulation (3) and the sparse PSDP formulation (7). The numerical results of the Broyden
banded function are shown in Table 10. We used the relaxation order 3 for (7) because the
relaxation order 2 did not provide accurate optimal solutions. The sparse PSDP formulation
(7) provides accurate values indicated in the column of rel.err and performs better in terms
of cpu time. The numbers shown in the columns of sizeA, #nzA, and sdpBl of (7) are smaller
than those of (3).

123

16 J Glob Optim (2010) 46:1–23

Table 11 Broyden banded functions with k = 3

k n ω sizeA #nzA sdpBl rel.err cpu

The sparse POP formulation (3)

3 7 3 965 × 9408 9405 56(56.0) 8.9e−9 5.4

3 10 3 1931 × 19600 19595 84(61.6) 4.8e−8 21.1

3 30 3 6761 × 81536 81510 56(56.0) 1.7e−7 46.8

3 100 3 24401 × 301056 300960 56(56.0) 5.5e−7 200.5

The sparse PSDP formulation (7)

3 7 3 1387 × 8924 13624 28(19.1) 3.2e−9 7.9

3 10 3 2412 × 16096 24023 36(21.2) 1.8e−9 18.2

3 30 3 7761 × 48850 75790 28(22.2) 6.8e−9 44.9

3 100 3 27431 × 172610 267870 28(23.0) 1.1e−7 142.9

Table 12 Broyden banded functions with k = 1

k n ω sizeA #nzA sdpBl rel.err cpu

The sparse POP formulation (3)

1 30 3 1595 × 11200 11172 20(20.0) 6.9e−8 1.9

1 100 3 5515 × 39200 39102 20(20.0) 1.3e−7 6.7

The sparse PSDP formulation (7)

1 30 3 2778 × 16048 24584 15(13.1) 2.3e−9 11.4

1 100 3 9498 × 54828 84084 15(13.3) 9.9e−9 30.5

We now change Ji to observe the effects of the number of variables in each fi (x) upon
sdpBl and sparsity of A, and the performance of the two formulations. Because the number
of indices in Ji determines the number of variables that appear in fi (x), we use varying k in
Ji = { j | j �= i,max(1, i − k) ≤ j ≤ min(n, i + 1)} to change the number of variables in
fi (x). Table 12 shows the numerical results for k = 3. Notice that the sparse PSDP formu-
lation (7) gives optimal solutions faster than the sparse POP formulation (3). We see smaller
differences in sdpBl and the cpu time in Table 12 than in Table 11; sdpBl of (7) is about half
of that of (3). We notice that sizeA and #nzA of (7) are smaller than those of (3).

With k = 1, as shown in Table 5, the sparse POP formulation (3) gives faster results than
the sparse PSDP formulation (7), however, the accuracy of optimal solutions by (7) is higher
than (3). Note that sizeA and #nzA of (3) are smaller than those of (7) though sdpBl of (3) is
bigger than that of (7). This indicates that cpu time is more affected by sizeA and #nzA than
sdpBl.

The Watson function [20] is described as

fi (x) =
m∑

j=1

(j − 1)x j y j−2
i −

⎛

⎜⎝

⎛

⎝
m∑

j=1

x j y j−1
i

⎞

⎠
2

− 1

⎞

⎟⎠

2

− 1 (i = 1, . . . , 29)

f30(x) = x1, f (x)31 = x2 − x2
1 − 1,

where yi = i/29. The numerical results of the Watson function are shown in Table 13. Note
that the difference in cpu time between the sparse POP formulation (3) with m = 7 and

123

J Glob Optim (2010) 46:1–23 17

Table 13 Watson function

m ω sizeA #nzA sdpBl rel.err cpu

The sparse POP formulation (3)

7 2 329 × 2836 3276 36(9.9) 9.7e−4 4.1

7 3 791 × 21008 30072 36(36.0) 6.6e−5 32.7

10 2 1000 × 8756 9955 66(13.6) 3.4e−2 43.1

10 3 3002 × 97460 141009 66(66.0) 1.1e−1 1049.9

10 4 − Out of memory −
The sparse PSDP formulation (7)

7 1 66 × 2156 5011 8(4.8) 1.2e−1 3.1

7 2 4850 × 82744 328364 44(16.2) 7.6e−6 405.3

10 1 96 × 3829 8934 11(6.2) 1.0e+0 2.4

10 2 10862 × 217743 975265 77(23.8) 1.1e−5 3104.5

ω = 2 and the sparse PSDP formulation (7) with m = 7 and ω = 1 is small, and the rel.err
of (3) is smaller than (7). For n = 7 and ω = 2, (7) obtains more accurate optimal solution
than (3) with m = 7 and ω = 2 while taking more cpu time. We see that smaller sizeA and
#nzA of (3) result in shorter cpu time. In the case of n = 10, (7) resulted in a smaller relative
error with ω = 2 than (3) with ω = 2 and 3. In the case of ω = 4 of (3), the size of A of the
sparse POP formulation (3) was too large to handle, stopping with out of memory.

A difficult unconstrained optimization problem known as NP-complete is partitioning an
integer sequence a = (a1, a2, . . . , an). That is, if there exists x ∈ {±1}n such that aT x = 0,
then the sequence can be partitioned. It can be formulated as

min f (x) = (aT x)2 +
n∑

i=1

(x2
i − 1)2. (22)

Numerical results for several sequences of a are shown in [11]. We tested the sequences
of a of large dimension among the problems included in [11]. Tables 14 and 15 show the
numerical results for the sequences of dimension 10 and 11, respectively in [11]. The sparse
PSDP formulation (7) in Tables 14 and 15 finds approximate solutions faster than the sparse
POP formulation (3). Smaller values are displayed for sizeA and #nzA of (7) than those of
(3). The solutions obtained by (7) for both sequence a’s resulted in higher accuracy than the
solutions in [11].

Solving the problem (22) of large dimension can be time-consuming because it does not
appear to have any sparsity in (22). However, if the technique proposed in [13] is applied, it
can be solved efficiently. More precisely, let

P =

⎡

⎢⎢⎢⎢⎢⎣

a1 a2 · · · an−1 an

0 a2 · · · an−1 an

0 0 · · · an−1 an
...

...
...

0 0 0 0 an

⎤

⎥⎥⎥⎥⎥⎦
,

123

18 J Glob Optim (2010) 46:1–23

Table 14 Numerical results for the problem of partitioning integer sequence a = (1, 2, 3, 20, 5, 6, 7, 10,
11, 77)

n ω sizeA #nzA sdpBl rel.err cpu

The sparse POP formulation (3)

10 2 1000 × 8756 9955 66(13.6) 1.2e+0 37.8

10 3 3002 × 97460 141009 66(66.0) 1.2e+0 936.7

Solution (1.0000 −0.9996 1.0000 0.9991 0.9991 0.9991 −0.9997 0.9991 0.9991 −0.6099)

10 3 Out of memory

The sparse PSDP formulation (7)

10 1 76 × 357 371 11(2.4) 9.5e−1 0.3

10 2 1158 × 8597 11934 67(5.4) 8.3e−2 65.5

Solution (1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 −0.8442)
10 3 Out of memory

Table 15 Numerical results for the problem of partitioning integer sequence a = (1, 2, 3, 20, 5, 6, 7, 10, 11,
77, 3)

n ω sizeA #nzA sdpBl rel.err cpu

The sparse POP formulation (3)

11 2 1364 × 11958 13530 78(14.9) 1.0e+0 95.5

11 3 4367 × 148644 215556 78(78.0) 1.0e+0 3490.3

Solution (1.0000 −0.9999 1.0000 −0.9998 0.9998 −0.9998 −1.0000 −0.9998 −0.9998 0.7792 −1.0000)

The sparse PSDP formulation (7)

11 1 89 × 414 430 12(2.4) 1.0e+0 0.3

11 2 1543 × 11362 15594 79(5.5) 4.8e−2 169.4

Solution (1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 −0.8832 1.0000)

and P x = y. Then, x = P−1 y, or,

xi = yi − yi+1

ai
for i = 1, . . . , n − 1,

xn = yn

an

Consequently, (22) becomes

min g(x) = f (P−1 y) = y2
1 +

n−1∑

i=1

{(
yi − yi+1

ai

)2

− 1

}2

+
{(

yn

an

)2

− 1

}2

. (23)

We notice that cpu time in Tables 16 and 17 is much smaller than of Table 14 and 15, although
the accuracy has deteriorated slightly. With the transformation, the sparse PSDP formulation
(7) performs better than the sparse POP formulation (3) in finding approximate solutions
with smaller relative errors. The formulation (7) with m = 10 and ω = 2 has larger numbers
in sizeA, #nzA and sdpBl than (3) with m = 10 and ω = 3 taking longer to obtain a lower
bound as shown in Table 16. Similar results are displayed in Table 17. The formulation (3)
with m = 10 and ω = 2 in Table 16 and (3) with m = 11 and ω = 2 in Table 17 take slightly
shorter cpu time than (7) with m = 10 and ω = 1 in Table 16 and (7) with m = 11 and ω = 1

123

J Glob Optim (2010) 46:1–23 19

Table 16 Numerical results for the problem of partitioning integer sequence a = (1, 2, 3, 20, 5, 6, 7, 10,
11, 77) using the transformation

m ω sizeA #nzA sdpBl rel.err cpu

The sparse POP formulation (3)

10 2 94 × 672 743 6(3.9) 1.3e+1 1.0

10 3 140 × 1304 1645 6(6.0) 1.3e+1 1.6

Solution Not found

The sparse PSDP formulation (7)

10 1 40 × 213 265 3(2.4) 9.9e−1 2.1

10 2 263 × 2527 4174 9(5.2) 7.5e−2 13.4

Solution (−1.0052 −1.0030 −1.0043 −1.0279 −1.0072 −1.0087 −1.0101 −1.0143 −1.0157 0.8597)

Table 17 Numerical results for the problem of partitioning integer sequence a = (1, 2, 3, 20, 5, 6, 7, 10,
11, 77, 3) using the transformation

m ω sizeA #nzA sdpBl rel.err cpu

The sparse POP formulation (3)

11 2 97 × 688 761 6(3.8) 1.3e+1 1.4

11 3 145 × 1339 1687 6(5.7) 1.3e+1 1.5

Solution Not found

The sparse PSDP formulation (7)

11 1 44 × 234 292 3(2.4) 9.6e−1 2.4

11 2 290 × 2786 4619 9(5.3) 4.3e−2 13.8

Solution (1.0059 1.0030 1.0030 1.0217 1.0053 1.0065 1.0076 1.0109 1.0120 − 0.8954 1.0000)

in Table 17, respectively, but the rel.err is larger in (3). We also note that the difference in
cpu time is small. In these cases, sizeA, #nzA, and sdpBl do not serve as the deciding factors
for cpu time.

For additional test problems of partitioning sequences, we generated integer sequences
randomly as follows. Let u and ν be positive integers, and let r be a random number in (0, 1).
Then, we create ai =
r ·u� for i = 1, . . . , ν and compute s = ∑ν

i=1 ai . Next, aν+1, . . . , am

are generated such that
∑m

i=ν+1 ai = s. More precisely, aν+1, . . . , am−1 are computed by

ai =
r · u�, and am = s −∑m−1
i=ν+1 ai . Note that u decides the magnitude of ai and ν the

number of elements in the sequence. Table 18 displays the numerical results for a randomly
generated integer sequence. In this case, increasing relaxation order did not result in higher
accuracy in both of the sparse POP formulation (3) and the sparse PSDP formulation (7).
Errors involved in the transformation may have caused the large relative error. We note, how-
ever, the signs of solution values are correct. The rel.err and cup time of (7) are smaller than
(3). In Table 19, we see a big difference in cpu time between (3) and (7). The accuracy of
the sparse POP formulation is slightly better.

We use polynomial systems in [30] to solve the following problem:

min
n∑

i=1
fi (x)2 subj. to li ≤ xi ≤ ui (24)

123

20 J Glob Optim (2010) 46:1–23

Table 18 Numerical results for the problem of partitioning randomly generated integer sequence a = (3 1 2
1 1 1 1 3 3 2 1 3 4), u = 3, ν = 8 using the transformation

m ω sizeA #nzA sdpBl rel.err cpu

The sparse POP formulation (3)

13 2 124 × 888 980 6(3.9) 2.1e+1 0.9

(−1.3190 −1.3151 1.2849 1.2988 1.4303 1.4421 −1.1039 1.3206 −1.0170 1.6722

−1.3672 −2.0442 1.0000)

The sparse PSDP formulation (7)

13 1 52 × 276 346 3(2.4) 7.6e−1 0.5

Solution (−0.9951 − 0.99890.7459 0.9940 0.9986 0.9987 − 0.9951 0.5032 − 0.9900 0.9985

−0.9987 − 0.9994 0.9999)

Table 19 Numerical results for the problem of partitioning randomly generated integer sequence a = (3 1 2
1 1 1 1 3 3 2 1 3 3 3 4), u = 3, k = 9

m ω sizeA #nzA sdpBl rel.err cpu

The sparse POP formulation (3)

15 2 3875 × 33896 37720 136(19.9) 2.1e−2 2869.6

(1.0000 −1.0000 1.0000 1.0000 1.0000 0.9998 −1.0000 −0.9999

−1.0000 0.9999 −1.0000 −1.0000 1.0000 0.9999 −0.9999)

The sparse PSDP formulation (7)

15 1 151 × 682 706 16(2.4) 7.9e−1 1.0

Solution (1.0000 −0.9998 0.9999 0.9996 0.9997 −0.9984 −0.9999 −0.3342

−0.9998 0.9998 −0.9999 −0.9998 0.9999 0.9997 −0.9995)

where fi : R
n → R represents i th equation of polynomial system, li and ui denote lower

and upper bounds for xi , respectively. Many numerical methods exist for solving a system
of polynomial f (x) = 0. One of the most successful methods is the polyhedral homotopy
continuation method [23], which provides all isolated complex solutions of f (x) = 0. When
one or some of isolated real solutions in a certain interval are to be found, it is more rea-
sonable to formulate the problem as (24). We must say, however, that any comparison of the
presented method with the polyhedral continuation method is not of our interest; the state-
of-art software package [24] for the polyhedral homotopy continuation method computes all
complex solutions of economic-n and cyclic-n polynomial systems much faster than the pre-
sented method that computes a single solution of (24). The main concern here is comparing
the sparse POP formulation (3) with the sparse PSDP formulation (7) through polynomial
systems.

Values given for lower bounds li and upper bounds ui for variables xi (i = 1, 2, . . . , n) are
crucial to have the convergence to an optimal value. See Sect. 5.6 of [32]. When appropriate
values for the bounds are not known in advance, we simply assign a very large number and
a very smaller number, for instance, 1.0e+10 and −1.0e+10, to the bounds and solve (24).
If an optimal value of desired accuracy is not obtained, then the attained optimal solution
values are used for the lower and upper bounds after perturbing the values slightly. Then, the
problem is solved again.

The two formulations are compared numerically in Table 20. We use fi (x) from the cor-
responding polynomial whose name is described in the first column [30]. The number in the

123

J Glob Optim (2010) 46:1–23 21

Table 20 Polynomials

Prob. iter. deg n ω sizeA #nzA sdpBl rel.err cpu

The sparse POP formulation (3)

eco-6 1 3 6 3 506 × 11852 16549 38(28.8) 2.9e−2 7.2

eco-6 2 3 6 3 506 × 11852 16549 38(28.8) 2.2e−13 4.0

eco-8 1 3 8 3 1441 × 29566 41709 66(46.6) 1.9e−11 98.3

eco-10 1 3 10 3 3382 × 63586 89715 102(68.8) 5.5e−9 1319.3

cyclic-5 1 5 5 5 3002 × 228258 307632 252(137.5) 8.3e−14 1789.0

cyclic-6 1 6 6 6 Out of memory

The sparse PSDP formulation (7)

eco-6 1 3 6 2 265 × 2511 4244 14(6.9) 5.8e−3 1.7

eco-6 2 3 6 2 265 × 2511 4307 14(6.9) 3.7e−9 1.4

eco-8 1 3 8 2 529 × 4713 8267 18(8.5) 3.7e−9 3.9

eco-10 1 3 10 2 867 × 7908 14258 22(10.1) 4.0e−9 7.9

cyclic-5 1 5 5 3 2771 × 50700 83077 84(42.1) 3.3e−9 148.8

cyclic-6 1 6 6 3 2187 × 54084 148153 72(38.3) 5.8e−2 230.6

column “iter” indicates the number of times that the problem is solved with updated lower
and upper bounds; 1 means initial application of the sparse POP formulation (3) or the sparse
PSDP formulation (7) for the problem (24). The initial bounds for the variables were given
as [−5, 5] for the tested problems. As shown in Table 20, (7) outperforms (3) in obtaining
optimal solutions in less cpu time. In cyclic-6, (3) resulted in out of memory because sizeA
was too large to handle.

5.1 Comparison with a local method

We compare the proposed method with a local method for solving nonlinear least squares
problems using a Matlab function “lsqnonlin”, an implementation of the trust-region reflec-
tive Newton method [3,4]. Table 21 shows numerical results for the Broyden Tridiagonal
function, the generalized Rosenbrock function, the chained Wood function, and the Broyden
banded function. The values for lower and upper bounds of variables for all the test functions
were taken as −10 and 10, respectively.

The Broyden banded function and the Broyden tridiagonal function have zero optimal
value, but the local method did not provide their optimal values. For the generalized Rosen-
brock function whose optimal value is zero, we notice that the convergence to the global
minimum solution depends on a choice of initial points. For the chained Wood function, the
cpu time consumed to attain the optimal value is affected very much by initial points. We
also observe that the cpu time for the functions in Tables 7, 8 and 9 is smaller than that of
Table 21.

6 Concluding remarks

We have discussed various ways of formulating polynomial least problems as polynomial
SDPs, and presented an efficient polynomial SDP formulation after comparing the degree of

123

22 J Glob Optim (2010) 46:1–23

Table 21 Numerical results obtained using Matlab function “lsqnonlin”. “init.pt” means initial guess for all
xi (i = 1, . . . , n), “resnorm” the value of the squared 2-norm of the residual at computed x

Prob. n init.pt resnorm cpu init.pt resnorm cpu

BroydenTri 200 0 3.90e + 00 57.57 1 1.12e + 0 38.73

500 0 6.35e + 00 168.90 1 1.12e + 0 1244.63

1000 0 6.44e + 00 1948.64 1 1.12e + 0 638.61

Gen.Rosen 200 0 1.97e + 2 10.56 2 6.13e−15 29.70

500 0 4.94e + 2 54.04 2 1.30e−14 151.78

1000 0 9.89e + 2 216.32 2 2.73e−14 566.36

ChainWood 200 0 1.57e−14 46.40 2 7.60e−14 41.32

400 0 4.33e−15 192.12 2 1.19e−13 143.84

1000 0 5.40e−13 1272.55 2 2.43e−14 867.39

BroydenBand 10 0 2.15e + 0 0.93 1 2.15e + 0 0.98

15 0 2.70e + 0 1.94 1 2.15e + 0 2.15

polynomials, and the sizes of the moment and the localizing matrices. Solving the polynomial
SDP is expected to provide the computational efficiency over solving the given form of poly-
nomial least squares problem because the degree of polynomials in the former formulation
is smaller than the degree of polynomials in the latter.

Numerical tests performed on various test problems show that the size of the coefficient
matrix A, the number of nonzero elements of A and the size of SDP blocks of A are important
factors on computational efficiency. Overall performance of the polynomial SDP formulation
is shown to be better than the POP formulation except a few cases.

We finally note that our discussion on formulating polynomial least squares problem (1)
as a polynomial SDP can be extended to a constrained problem of the form:

minimize
∑

i∈M

fi (x)2pi

subject to g j (x) ≥ 0 (j = 1, . . . , m̂),

⎫
⎬

⎭ (25)

where fi (x) and g j (x) are polynomials in x ∈ R
n .

Acknowledgements S. Kim was supported by Kosef R01-2005-000-10271-0 and KRF-2006-312-C00062.
M. Kojima was supported by Grant-in-Aid for Scientific Research (B) 19310096.

References

1. Blair, J.R.S., Peyton, B.: An introduction to chordal graphs and clique trees. In: George, A., Gilbert,
J.R., Liu, J.W.H. (eds.) Graph Theory and Sparse Matrix Computation, pp. 1–29. Springer-Verlag, New
York (1993)

2. Borchers, B.: SDPLIB 1.2, a library of semidefinite programming test problems. Optim. Methods
Softw. 11&12, 683–690 (1999)

3. Coleman, T.F., Li, Y.: On the convergence of reflective Newton methods for large-scale nonlinear mini-
mization subject to bounds. Math. Progr. 67(2), 189–224 (1994)

4. Coleman, T.F., Li, Y.: An interior, trust region approach for nonlinear minimization subject to
bounds. SIAM J. Optim. 6, 418–445 (1996)

5. Conn, A.R., Gould, N.I.M., Toint, P.L.: Testing a class of methods for solving minimization problems
with simple bounds on the variables. Math. Comp. 50, 399–430 (1988)

123

J Glob Optim (2010) 46:1–23 23

6. Fujisawa, K., Kojima, M., Nakata, K.: SDPA (SemiDefinite Programming Algorithm) user’s manual,
Version 5.0, Research Report B-308, Department of Mathematical and Computing Sciences, Tokyo Insti-
tute of Technology, Oh-Okayama, Meguro, Tokyo 152-8552, Japan (1995)

7. Gould, N.I.M., Orban, D., Toint, Ph.L.: Cuter, a constrained and unconstrained testing environment,
revisited. TOMS 29, 373–394 (2003)

8. Henrion, D., Lasserre, J.B.: GloptiPoly: global optimization over polynomials with Matlab and SeDuMi.
Laboratoire d’Analyse et d’Architecture des Syst‘emes, Centre National de la Recherche Scientifique, 7
Avenue du Colonel Roche, 31 077 Toulouse, cedex 4, France, February (2002)

9. Henrion, D., Lasserre, J.B.: Convergent relaxations of polynomial matrix inequalities and static output
feedback. IEEE Trans. Autom. Control 51(2), 192–202 (2006)

10. Hol, C.W., Scherer, C.W.: Sums of squares relaxations for polynomial semi-definite programming. In: De
Moor, B., Motmans, B. (eds.) Proceedings of the 16th International Symposium on Mathematical Theory
of Networks and Systems. Leuven, Belgium, 5–9 July (2004) 1–10

11. Jibetean, D., Laurent, M.: Semidefinite approximation for global unconstrained polynomial optimiza-
tion. SIAM J. Optim. 16(2), 490–514 (2005)

12. Kim, S., Kojima, M., Waki, H.: Generalized Lagrangian duals and sums of squares relaxations of sparse
polynomial optimization problems. SIAM J. Optim. 15, 697–719 (2005)

13. Kim, S., Kojima, M., Toint, Ph.L.: Recognizing underlying sparsity in Optimization. Math. Program.,
Ser. A. (2009). doi:10.1007/s10107-008-0210-4

14. Kobayashi, K., Kim, S., Kojima, M.: Correlative sparsity in primal-dual interior point methods for LP,
SOCP and SDP. Appl. Math. Optim. 58(1), 69–88 (2008)

15. Kobayashi, K., Kim, S., Kojima, M.: Sparse second order cone programming approaches for convex
opimitization problems. J. Oper. Res. Soc. Japan 51(3), 241–264 (2008)

16. Kojima, M.: Sums of squares relaxations of polynomial semidefinite programs. Research Report B-397,
Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Oh-Okayama,
Meguro, Tokyo 152-8552, Japan (2003)

17. Kojima, M., Muramatsu, M.: An extension of sums of squares relaxations to polynomial optimization
problems over symmetric cones. Math. Program. 110, 315–326 (2007)

18. Kojima, M., Muramatsu, M.: A note on sparse SOS and SDP relaxations for polynomial optimization
problems over symmetric cones. Comput. Optim. Appl. 42(1), 31–41 (2009)

19. Kojima, M., Kim, S., Waki, H.: Sparsity in sums of squares of polynomials. Math. Program. 103,
45–62 (2005)

20. Kowalik, J.S., Osborne, M.R.: Methods for unconstrained optimization problems. Elseview North-
Halland, New York (1968)

21. Lasserre, J.B.: Global optimization with polynomials and the problems of moments. SIAM J.
Optim. 11, 796–817 (2001)

22. Lasserre, J.B.: Convergent SDP-relaxations in polynomial optimization with sparsity. SIAM J.
Optim. 17(3), 822–843 (2006)

23. Li, T.Y.: Solving polynomial systems by polyhedral homotopies. Taiwan J. Math. 3, 251–279 (1999)
24. Li, T.Y.: HOM4PS in Fortran. http://www.mth.msu.edu/~li/
25. More, J.J., Garbow, B.S., Hillstrom, K.E.: Testing unconstrained optimization software. ACM Trans.

Math. Soft. 7, 17–41 (1981)
26. Nash, S.G.: Newton-type minimization via the Lanczos method. SIAM J.Numer. Anal. 21, 770–788 (1984)
27. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer (2006)
28. Prajna, S., Papachristodoulou, A., Parrilo, P.A.: SOSTOOLS: Sum of Squares Optimization Toolbox for

MATLAB—User’s Guide. Control and Dynamical Systems, California Institute of Technology, Pasadena,
CA 91125 USA, (2002)

29. Sturm, F.J.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim.
Methods Softw. 11(12), 625–653 (1999)

30. Test suite of polynomial systems. http://www.math.uic.edu/~jan
31. Toh, K., Todd, M.J., Tütüntü, R.H.: SDPT3—a MATLAB software package for semidefinite program-

ming. Department of Mathematics, National University of Singapore, Singapore (1998)
32. Waki, H., Kim, S., Kojima, M., Muramatsu, M.: Sums of squares and semidefinite programming

relaxations for polynomial optimization problems with structured sparsity. SIAM J. Optim. 17(1),
218–242 (2006)

33. Waki, H., Kim, S., Kojima, M., Muramatsu, M.: SparsePOP : a sparse semidefinite programming relax-
ation of polynomial optimization problems. ACM Trans. Math. Softw. 15, 2–15 (2008)

123

http://dx.doi.org/10.1007/s10107-008-0210-4
http://www.mth.msu.edu/~li/
http://www.math.uic.edu/~jan

	Solving polynomial least squares problemsvia semidefinite programming relaxations
	Abstract
	1 Introduction
	2 Various formulations of the polynomial least squares problems
	2.1 A sparse POP formulation
	2.2 Polynomial SDP formulations of the polynomial least squares problem

	3 A sparse SDP relaxation of the polynomial SDP
	4 Comparison of various formulations
	5 Numerical results
	5.1 Comparison with a local method

	6 Concluding remarks
	Acknowledgements

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

